Topic 5.6 - Determining Concavity of Functions
 Topic 5.7 - Using the Second Derivative Test

Determine the open intervals where the graph of the function is concave up or concave down. Identify any points of inflection. Use a number line to organize your analysis.
1.) $f(x)=x^{4}-6 x^{2}+2 x+3$

$$
f^{\prime}(x)=4 x^{3}-12 x+2
$$

$$
f^{\prime \prime}(x)=12 x^{2}-12
$$

$\underline{f^{\prime \prime}(x)=0}$
$12 x^{2}-12=0$
$\underline{f^{\prime \prime}(x) \text { is not differentiable }}$
$12\left(x^{2}-1\right)=0$
$x=-1,1$

$f(x)$ is
concave upward on
$(-\infty,-1)$ and $(1, \infty)$ because $f^{\prime \prime}(x)>0$ on those intervals.
$f(x)$ is concave downward on $(-1,1)$ because $f^{\prime \prime}(x)<0$ on that interval.
$f(x)$ has points of inflection at on $(-1,-4)$ and $(1,0)$ because $f^{\prime \prime}(x)$ changes signs at $x=-1$ and $x=1$.
2.) $f(x)=x+\frac{1}{x}$

$$
\begin{aligned}
& f^{\prime}(x)=1-x^{-2} \\
& f^{\prime \prime}(x)=2 x^{-3}=\frac{2}{x^{3}} \\
& f^{\prime \prime}(x)=0
\end{aligned}
$$

$$
f^{\prime \prime}(x) \text { is not differentiable }
$$

$$
\begin{aligned}
x^{3} & =0 \\
x & =0
\end{aligned}
$$

Sign of $f^{\prime \prime}$

$f(x)$ is
concave downward on
$(-\infty, 0)$ because $f^{\prime \prime}(x)<0$ on that interval.
$f(x)$ is concave upward on $(0, \infty)$ because $f^{\prime \prime}(x)>0$ on that interval.
$f(x)$ has no points of inflection. Note: $f(0)$ is undefined
3.) $f(x)=\sin x-\cos x$ on $(0,2 \pi)$.

$$
\begin{aligned}
& f^{\prime}(x)=\cos x+\sin x \\
& f^{\prime \prime}(x)=-\sin x+\cos x \\
& \frac{f^{\prime \prime}(x)=0}{-\sin x+\cos x=0} \\
& \cos x=\sin x \\
& x=\frac{\pi}{4}, \frac{5 \pi}{4}
\end{aligned}
$$

$f(x)$ is concave upward on $\left(0, \frac{\pi}{4}\right)$ and $\left(\frac{5 \pi}{4}, 2 \pi\right)$ because $f^{\prime \prime}(x)>0$ on those intervals.
$f(x)$ is concave downward on $\left(\frac{\pi}{4}, \frac{5 \pi}{4}\right)$ because $f^{\prime \prime}(x)<0$ on that interval.
$f(x)$ has points of inflection at on $\left(\frac{\pi}{4}, 0\right)$ and $\left(\frac{5 \pi}{4}, 0\right)$ because $f^{\prime \prime}(x)$ changes signs at $x=\frac{\pi}{4}$ and $x=\frac{5 \pi}{4}$.
4.) $f(x)=\frac{x^{2}-1}{x}=x-x^{-1}$
$f^{\prime}(x)=1+x^{-2}$
$f^{\prime \prime}(x)=-2 x^{-3}=-\frac{2}{x^{3}}$
$\begin{aligned} \frac{f^{\prime \prime}(x)=0}{\varnothing} & \frac{f^{\prime \prime}(x) \text { is not differentiable }}{x^{3}}=0 \\ x & =0\end{aligned}$

$f(x)$ is concave upward on $(-\infty, 0)$ because $f^{\prime \prime}(x)>0$ on that interval.
$f(x)$ is concave downward on $(0, \infty)$ because $f^{\prime \prime}(x)<0$ on that interval.
$f(x)$ has no points of inflection. Note: $f(0)$ is undefined
5.) $f(x)=x^{4 / 3}+4 x^{1 / 3}$

$$
\begin{array}{rl}
f^{\prime}(x)= & \frac{4}{3} x^{1 / 3}+\frac{4}{3} x^{-2 / 3} \\
f^{\prime \prime}(x) & =\frac{4}{9} x^{-2 / 3}-\frac{8}{9} x^{-5 / 3}=\frac{4}{9} x^{-5 / 3}(x-2)=\frac{4(x-2)}{9 \sqrt[3]{x^{5}}} \\
\frac{f^{\prime \prime}(x)}{}=0 & \frac{f^{\prime \prime}(x) \text { is not differentiable }}{4(x-2)}=0 \\
x & 9 \sqrt[3]{x^{5}}=0 \\
x & x
\end{array}
$$

$f(x)$ is concave upward on $(-\infty, 0)$ and $(2, \infty)$ because $f^{\prime \prime}(x)>0$ on those intervals.
$f(x)$ is concave downward on $(0,2)$ because $f^{\prime \prime}(x)<0$ on that interval.
point of inflection at $x=0$ and $x=2$ because $f^{\prime \prime}(x)$ changes signs at $x=0$ and $x=2$.
6.) $f(x)=x+3(1-x)^{1 / 3}$

$$
\begin{aligned}
& f^{\prime}(x)=1+(1-x)^{-2 / 3}(-1)= 1-(1-x)^{-2 / 3} \\
& f^{\prime \prime}(x)=\frac{2}{3}(1-x)^{-5 / 3}(-1)=\frac{-2}{3(1-x)^{5 / 3}} \\
& \frac{f^{\prime \prime}(x)=0}{\varnothing} \frac{f^{\prime \prime}(x) \text { is not differentiable }}{3(1-x)^{5 / 3}=0} \\
& x=1
\end{aligned}
$$

$f(x)$ is concave downward on $(-\infty, 1)$ because $f^{\prime \prime}(x)<0$ on those intervals.
$f(x)$ is concave upward on $(1, \infty)$ because $f^{\prime \prime}(x)>0$ on that interval.
$f(x)$ has a point of inflection at $x=1$ because $f^{\prime \prime}(x)$ changes signs at $x=1$
7.) $f(x)=x-\ln x \quad$ Note that $f(x)$ is only defined for $x>0$

$$
\begin{array}{ll}
f^{\prime}(x)=1-\frac{1}{x} \\
f^{\prime \prime}(x)=\frac{1}{x^{2}} & \\
\frac{f^{\prime \prime}(x)}{}=0 \\
\varnothing & \frac{f^{\prime \prime}(x) \text { is not differentiable }}{x^{2}=0}
\end{array}
$$

$f(x)$ is concave upward on $(0, \infty)$ because $f^{\prime \prime}(x)>0$ on that interval.
$f(x)$ has no points of inflection.
8.) $f(x)=e^{-3 x}$

$$
\begin{aligned}
& f^{\prime}(x)=-3 e^{-3 x} \\
& f^{\prime \prime}(x)=9 e^{-3 x}=\frac{9}{e^{3 x}} \\
& \frac{f^{\prime \prime}(x)=0}{\varnothing}
\end{aligned}
$$

$$
\frac{f^{\prime \prime}(x) \text { is not differentiable }}{e^{3 x}=0}
$$

$$
\varnothing
$$

$f(x)$ is concave upward on $(-\infty, \infty)$ because $f^{\prime \prime}(x)>0$ everywhere
$f(x)$ has no points of inflection.

Find all critical numbers and use the Second Derivative Test to classify each as the location of a relative maximum, relative minimum or neither.

9.)$\begin{aligned} & f(x)=x^{4}+4 x^{2}+1 \\ & f^{\prime}(x)=4 x^{3}+8 x \\ & f^{\prime}(x)=0 \\ & \frac{4 x\left(x^{2}+2\right)}{}=0 \\ & x=0 \\ & f^{\prime \prime}(x)=12 x^{2}+8 \end{aligned}$$\boldsymbol{x}$ $\boldsymbol{f}^{\prime \prime}(\boldsymbol{x})$ 0 $12(0)^{2}+8=8$ $f(x)$ has a relative minimum at $x=0$ because $f^{\prime}(0)=0$ and $f^{\prime \prime}(0)=8<0$.	10.) $f(x)=\frac{x^{2}-1}{x}$
11.) $f(x)=x^{1 / 5}(x+1)$	12.) $f(x)=\frac{\sqrt{x}}{1+\sqrt{x}}$
13.) $f(x)=x^{2} e^{-x}$	14.) $f(x)=\frac{x}{\ln x}$

\square

