Skill Builder: Topic 7.3 - Sketching Slope Fields Topic 7.4 - Reasoning Using Slope Fields

Sketch a slope field for each of the following differential equations.

Match each slope field with their differential equation.
__C__ 5. $\frac{d y}{d x}=\sin x$
\qquad
\qquad 6. $\frac{d y}{d x}=x-y$
A.

B.

__A_ 7. $\frac{d y}{d x}=2-y$
__B__ 8. $\frac{d y}{d x}=x+y$
C.

D.

Match each slope field with their differential equation.
__B__ 9. $\frac{d y}{d x}=0.5 x-1$
__C__ 10. $\frac{d y}{d x}=0.5 y$
A.

C.

D.

13. The slope field from a certain differential equation is shown to the right. Which of the following could be a specific solution to that differential equation?
(A) $y=x^{2}$
(B) $y=e^{x}$
(C) $y=e^{-x}$
(D) $y=\cos x$
(E) $y=\ln x$

14. The slope field from a certain differential equation is shown to the right. Which of the following could be a specific solution to that differential equation?
(A) $y=\sin x$
(B) $y=\cos x$
(C) $y=x^{2}$
(D) $y=\frac{1}{6} x^{3}$
(E) $y=\ln x$

15. Shown to the right is a slope field for the differential equation $\frac{d y}{d x}=y^{2}\left(4-y^{2}\right)$. If $y=g(x)$ is the solution to the differential equation with the initial condition $g(-2)=-1$, then $\lim _{x \rightarrow \infty} g(x)$ is
(A) $-\infty$
(B) -2
(C) 0
(D) 2
(E) 3

Screenshot from TI-Nspire

16. Consider the differential equation $\frac{d y}{d x}=\frac{x y}{2}$.
a. On the axes provided, sketch a slope field for the given differential equation.

b. Let f be the function that satisfies the given differential equation. Write an equation for the tangent line to the curve $y=f(x)$ that passes through the point $(1,1)$. Then use your tangent equation to estimate the value of $f(1.2)$.
$\left.\frac{d y}{d x}\right|_{(1,1)}=\frac{(1)(1)}{2}=\frac{1}{2} \quad y-1=\frac{1}{2}(x-1) \quad f(1.2) \approx y(1.2)=1+\frac{1}{2}(1.2-1)=1+\frac{1}{2}\left(\frac{1}{5}\right)=1 \frac{1}{10}$ or 1.1
17. Consider the differential equation $\frac{d y}{d x}=\frac{x}{y}$.
a. On the axes provided, sketch a slope field for the given differential equation.

b. Use a blue pen to sketch a solution curve that passes through the point $(0,1)$ on your slope field.
c. Use a pen color other than blue to sketch a solution curve that passes through the point $(0,-1)$ on your slope field.

Screenshot from TI-Nspire

