Skill Builder: Topics 8.4-8.6 - Area Between Curves

For each problem, sketch the region bounded by the graphs of the functions and find the area of the region. Problems marked a calculator icon indicate that you can use your calculator to evaluate the definite integral.

$\begin{aligned} & \text { 1.) } y=x^{2}+2 x+1, y=2 x+5 \\ & A=\int_{-2}^{2}\left(2 x+5-\left(x^{2}+2 x+1\right)\right) d x \\ & A=\int_{-2}^{2}\left(-x^{2}+4\right) d x \\ & A=\left.\left(-\frac{x^{3}}{3}+4 x\right)\right\|_{-2} ^{2} \\ & A=-\frac{(2)^{3}}{3}+4(2)-\left(-\frac{(-2)^{3}}{3}+4(-2)\right) \\ & A=-\frac{8}{3}+8-\frac{8}{3}+8=16-\frac{16}{3}=\frac{32}{3} \end{aligned}$ $\begin{aligned} x^{2}+2 x+1 & =2 x+5 \\ x^{2}-4 & =0 \\ x & = \pm 2 \end{aligned}$	$\begin{array}{ll} \text { 2.) } y=x^{2}-4 x+3, \quad y=-x^{2}+2 x+3 \\ A & =\int_{0}^{3}\left(-x^{2}+2 x+3-\left(x^{2}-4 x+3\right)\right) d x \\ A=\int_{0}^{3}\left(-2 x^{2}+6 x\right) d x & \begin{array}{ll} x^{2}-4 x+3=-x^{2}+2 x+3 \\ A & =\left.\left(-\frac{2 x^{3}}{3}+3 x^{2}\right)\right\|_{0} ^{3} \\ A x^{2}-6 x & =0 \\ A & =-\frac{2(3)^{3}}{3}+3(3)^{2}-(0) \end{array} \\ A=-\frac{54}{3}+27=-18+27=9 & x=0,3 \end{array}$
3.) $y=x^{2}, y=x^{3}$ $\begin{aligned} & A=\int_{0}^{1}\left(x^{2}-x^{3}\right) d x \\ & A=\left.\left(\frac{x^{3}}{3}-\frac{x^{4}}{4}\right)\right\|_{0} ^{1} \\ & A=\frac{(1)^{3}}{3}-\frac{(1)^{4}}{4}-(0) \\ & A=\frac{1}{3}-\frac{1}{4}=\frac{1}{12} \end{aligned}$ $\begin{aligned} x^{3} & =x^{2} \\ x^{3}-x^{2} & =0 \\ x^{2}(x-1) & =0 \\ x & =0,1 \end{aligned}$ Note: It may be difficult to determine which function lies above the other on the interval $[0,1]$. It is important to realize that a decimal less than $\mathbf{1}$ is raised to the $3^{\text {rd }}$ power, it results in a smaller value than it that number were raised to the second power.	$\begin{aligned} & \text { 4.) } y=\frac{1}{x^{2}}, y=0, x=1, x=5 \\ & A=\int_{1}^{5} \frac{1}{x^{2}} d x \\ & A=\left.\left(-\frac{1}{x}\right)\right\|_{1} ^{5} \\ & A=-\frac{1}{5}-(-1)=\frac{4}{5} \end{aligned}$

5.) $y=\sqrt{3 x}+1, y=x, x=0$ $\begin{aligned} & A=\int_{0}^{4.791}(\sqrt{3 x}+1-x) d x \\ & A=5.423 \end{aligned}$ $\begin{array}{ll} \text { solve }(\sqrt{3 \cdot x}+1=x, x) & x=\frac{\sqrt{21}+5}{2} \\ \text { solve }(\sqrt{3 \cdot x}+1=x, x) & x=4.79129 \end{array}$	$\begin{aligned} & \text { 6.) } y=\sqrt[3]{x}, y=x \\ & \sqrt[3]{x}=x \\ & x=x^{3} \\ & x^{3}-x=0 \\ & x\left(x^{2}-1\right)=0 \\ & x=-1,0,1 \end{aligned} \quad \begin{aligned} & A=\int_{-1}^{0}(x-\sqrt[3]{x}) d x+\int_{0}^{1}(\sqrt[3]{x}-x) d x \text { OR } 2 \int_{0}^{1}(\sqrt[3]{x}-x) d x \\ & A=\left.2\left(\frac{3}{4} x^{4 / 3}-\frac{1}{2} x^{2}\right)\right\|_{0} ^{1}=2\left(\frac{3}{4}-\frac{1}{2}\right)=\frac{1}{2} \end{aligned}$
$\text { 7.) } \begin{aligned} & x=2 y-y^{2}, x=-y \\ & 2 y-y^{2}=-y \\ & y^{2}-3 y=0 \\ & y(y-3)=0 \\ & y=0,3 \end{aligned} \quad \begin{aligned} & A=\int_{0}^{3}\left(2 y-y^{2}-(-y)\right) d y \\ & A=\int_{0}^{3}\left(-y^{2}+3 y\right) d y \\ & A=\left.\left(-\frac{y^{3}}{3}+\frac{3 y^{2}}{2}\right)\right\|_{0} ^{3} \\ & A=-\frac{27}{3}+\frac{27}{2}=\frac{-54+81}{6}=\frac{27}{6}=\frac{9}{2} \end{aligned}$	8.) $y=(x-1)^{3}, y=x-1$ $\begin{aligned} & A=\int_{0}^{1}\left((x-1)^{3}-(x-1)\right) d x+\int_{1}^{2}\left((x-1)-(x-1)^{3}\right) d x \\ & A=\int_{0}^{1}\left(x^{3}-3 x^{2}+3 x-1-x+1\right) d x+\int_{1}^{2}\left(x-1-x^{3}+3 x^{2}-3 x+1\right) d x \\ & A=\int_{0}^{1}\left(x^{3}-3 x^{2}+2 x\right) d x+\int_{1}^{2}\left(-x^{3}+3 x^{2}-2 x\right) d x \\ & A=\left.\left(\frac{x^{4}}{4}-x^{3}+x^{2}\right)\right\|_{0} ^{1}+\left.\left(-\frac{x^{4}}{4}+x^{3}-x^{2}\right)\right\|_{1} ^{2} \\ & A=\frac{1}{4}-1+1-\frac{16}{4}+8-4-\left(-\frac{1}{4}+1-1\right) \\ & A=\frac{1}{4}+\frac{1}{4}=\frac{1}{2} \end{aligned}$ Note: A more convenient approach to solving this problem would be to recognize the symmetry that exists between the two shaded regions. Therefore, a single integral expression like $2 \int_{0}^{1}\left((x-1)^{3}-(x-1)\right) d x$ would have computed the correct area.

13.) Find the value(s) of b if the vertical line $x=b$ divides the region between $y=16-2 x$ and the x-axis and y-axis into 2 equal regions.
$A=\int_{0}^{8}(16-2 x) d x$

$$
A=\left.\left(16 x-x^{2}\right)\right|_{0} ^{8}
$$

$$
A=128-64
$$

$$
A=64
$$

$$
\begin{aligned}
& A_{\text {half }}=\int_{0}^{b}(16-2 x) d x=32 \\
& A_{\text {half }}=\left.\left(16 x-x^{2}\right)\right|_{0} ^{b}=32 \\
& A_{\text {half }}=16 b-b^{2}=32 \\
& b^{2}-16 b+32=0 \\
& b=\frac{-(-16) \pm \sqrt{(-16)^{2}-4(1)(32)}}{2(1)}=\frac{16 \pm \sqrt{256-128}}{2} \\
& b=\frac{16 \pm \sqrt{128}}{2}
\end{aligned}
$$

Disregard the " + " as it results in a b value greater than 10 which lies outside the shaded region.
$\therefore b=\frac{16-\sqrt{128}}{2} \approx 2.343$

