Skill Builder: Topics 8.7-8.8 - Volumes with Cross Sections

For each problem, sketch the region bounded by the graphs of the functions and find the area of the region. $\underline{\mathrm{Be}}$ sure to draw in the representative rectangle. Only use a calculator for problems marked with the calculator icon.
1.) Find the volume of the solid whose base is the region bounded between the curve $y=x^{2}$ and the x-axis from $x=0$ to $x=2$ and whose cross sections taken perpendicular to the x-axis are depicted by each of the following shapes.

b.) semicircles $r=\frac{x^{2}-0}{2}$

$$
\begin{aligned}
V & =\frac{\pi}{2} \int_{0}^{2}\left(\frac{x^{2}}{2}\right)^{2} d x \\
& =\left.\frac{\pi}{8} \cdot \frac{x^{5}}{5}\right|_{0} ^{2} \\
& =\frac{\pi}{8} \cdot \frac{32}{5}=\frac{4}{5} \pi
\end{aligned}
$$

d.) equilateral triangles
$V=\int_{0}^{2} \frac{1}{2}\left(x^{2}\right)\left(\frac{\sqrt{3}}{2} x^{2}\right) d x$
$=\int_{0}^{2} \frac{\sqrt{3}}{4} x^{4} d x$
$=\left.\frac{\sqrt{3} x^{5}}{4 \cdot 5}\right|_{0} ^{2}=\frac{\sqrt{3}}{20}(32)=\frac{8 \sqrt{3}}{5}$
a.) squares

$$
\begin{aligned}
V & =\int_{0}^{2}\left(x^{2}\right)^{2} d x \\
& =\left.\frac{x^{5}}{5}\right|_{0} ^{2} \\
& =\frac{32}{5}
\end{aligned}
$$

c.) rectangles whose heights are 3 times the base width

$$
V=\int_{0}^{2}\left(3 x^{2}\right)\left(x^{2}\right) d x
$$

$$
=\int_{0}^{2} 3 x^{4} d x
$$

$$
=\left.\frac{3 x^{5}}{5}\right|_{0} ^{2}
$$

$$
=\frac{96}{5}
$$

e.) isosceles right triangles where the base is the hypotenuse
$V=\int_{0}^{2} \frac{1}{2}\left(x^{2}\right)\left(\frac{1}{2} x^{2}\right) d x$
$=\int_{0}^{2} \frac{1}{4} x^{4} d x$
$=\left.\frac{x^{5}}{4 \cdot 5}\right|_{0} ^{2}=\frac{32}{20}=\frac{8}{5}$
2.) Find the volume of the solid whose base is bounded by the circle whose center is the origin, whose radius is 3 and whose cross sections taken perpendicular to the x-axis are depicted by each of the following shapes.

Equation of circle

$$
\begin{aligned}
& x^{2}+y^{2}=9 \\
& y^{2}=9-x^{2} \\
& y= \pm \sqrt{9-x^{2}} \\
& s=\sqrt{9-x^{2}}-\left(-\sqrt{9-x^{2}}\right) \\
& =2 \sqrt{9-x^{2}}
\end{aligned}
$$

b.) semicircles $\quad r=\frac{2 \sqrt{9-x^{2}}}{2}=\sqrt{9-x^{2}}$

$$
\begin{aligned}
V & =\frac{\pi}{2} \int_{-3}^{3}\left(\sqrt{9-x^{2}}\right)^{2} d x=\pi \int_{0}^{3}\left(\sqrt{9-x^{2}}\right)^{2} d x \\
& =\pi \int_{0}^{3}\left(9-x^{2}\right) d x \\
& =\left.\pi\left(9 x-\frac{x^{3}}{3}\right)\right|_{0} ^{3}=\pi(27-9)=18 \pi
\end{aligned}
$$

d.) equilateral triangles

$$
\begin{aligned}
V & =\int_{-3}^{3} \frac{1}{2}\left(2 \sqrt{9-x^{2}}\right)\left(\frac{\sqrt{3}}{2} \cdot 2 \sqrt{9-x^{2}}\right) d x \\
& \quad \text { or } 2 \int_{0}^{3}\left(\sqrt{9-x^{2}}\right)\left(\sqrt{3} \cdot \sqrt{9-x^{2}}\right) d x \\
= & 2 \sqrt{3} \int_{0}^{3}\left(9-x^{2}\right) d x \\
= & \left.2 \sqrt{3}\left(9 x-\frac{x^{3}}{3}\right)\right|_{0} ^{3}=2 \sqrt{3}(27-9) \\
= & 36 \sqrt{3}
\end{aligned}
$$

a.) squares

$$
\begin{aligned}
V & =\int_{-3}^{3}\left(2 \sqrt{9-x^{2}}\right)^{2} d x \text { or } 2 \cdot \int_{0}^{3}\left(2 \sqrt{9-x^{2}}\right)^{2} d x \\
& =8 \int_{0}^{3}\left(9-x^{2}\right) d x \\
& =\left.8\left(9 x-\frac{x^{3}}{3}\right)\right|_{0} ^{3}=8(27-9)=144
\end{aligned}
$$

c.) rectangles whose heights are twice the base width

$$
\begin{aligned}
V & =\int_{-3}^{3} 2\left(2 \sqrt{9-x^{2}}\right)\left(2 \sqrt{9-x^{2}}\right) d x \text { or } 2 \int_{0}^{3} 2\left(2 \sqrt{9-x^{2}}\right)\left(2 \sqrt{9-x^{2}}\right) d x \\
& =16 \int_{0}^{3}\left(9-x^{2}\right) d x \\
& =\left.16\left(9 x-\frac{x^{3}}{3}\right)\right|_{0} ^{3}=16(27-9) \\
& =288
\end{aligned}
$$

e.) isosceles right triangles where the base is the hypotenuse

$$
\begin{aligned}
V & =\int_{-3}^{3} \frac{1}{2}\left(2 \sqrt{9-x^{2}}\right)\left(\frac{1}{2} \cdot 2 \sqrt{9-x^{2}}\right) d x \\
& \text { or } 2 \int_{0}^{3} \frac{1}{2}\left(2 \sqrt{9-x^{2}}\right)\left(\frac{1}{2} \cdot 2 \sqrt{9-x^{2}}\right) d x \\
& =2 \int_{0}^{3}\left(9-x^{2}\right) d x \\
& =\left.2\left(9 x-\frac{x^{3}}{3}\right)\right|_{0} ^{3}=2(27-9) \\
& =36
\end{aligned}
$$

3.) Find the volume of the solid whose base is the region bounded between the curve $y=x^{2}-x-3$ and $y=x$ and whose cross sections taken perpendicular to the x-axis are depicted by each of the following shapes.

$s=x-\left(x^{2}-x-3\right)=-x^{2}+2 x+3$	a.) squares $\begin{aligned} & V=\int_{-1}^{3}\left(-x^{2}+2 x+3\right)^{2} d x \\ & \\ & =\frac{512}{15} \\ & \int_{-1}^{3}\left(-x^{2}+2 \cdot x+3\right)^{2} d x \end{aligned}$
$\begin{aligned} & \text { b.) } \begin{aligned} & \text { semicircles } \quad r=\frac{-x^{2}+2 x+3}{2} \\ V & =\frac{\pi}{2} \int_{-1}^{3}\left(\frac{-x^{2}+2 x+3}{2}\right)^{2} d x= \\ & =\frac{64 \pi}{15} \\ \frac{\pi}{2} \cdot \int_{-1}^{3}\left(\frac{-x^{2}+2 \cdot x+3}{2}\right)^{2} \mathrm{~d} x & \frac{64 \cdot \pi}{15} \end{aligned} \end{aligned}$	c.) rectangles whose heights are half the base width $\begin{aligned} V & =\int_{-1}^{3} \frac{1}{2}\left(-x^{2}+2 x+3\right)\left(-x^{2}+2 x+3\right) d x \\ & =\frac{256}{15} \end{aligned}$ $\int_{-1}^{3}\left(\frac{1}{2} \cdot\left(-x^{2}+2 \cdot x+3\right)^{2}\right) d x$
d.) equilateral triangles $\begin{aligned} V & =\frac{\sqrt{3}}{4} \int_{-1}^{3}\left(-x^{2}+2 x+3\right)^{2} d x \\ & =\frac{512 \sqrt{3}}{60}=\frac{128 \sqrt{3}}{15} \\ \frac{\sqrt{3}}{4} \cdot \int_{-1}^{3}\left(-x^{2}+2 \cdot x+3\right)^{2} \mathrm{~d} x & \frac{128 \cdot \sqrt{3}}{15} \end{aligned}$	e.) isosceles right triangles where the base is the hypotenuse $\begin{aligned} V & =\frac{1}{4} \int_{-1}^{3}\left(-x^{2}+2 x+3\right)^{2} d x \\ & =\frac{512}{60}=\frac{128}{15} \\ \frac{1}{4} \cdot \int_{-1}^{3}\left(-x^{2}+2 \cdot x+3\right)^{2} \mathrm{~d} x & \frac{128}{15} \end{aligned}$

4.) Find the volume of the solid whose base is the region bounded between the curve $y=\sec x$ and the x-axis from $x=\pi / 4$ to $x=\pi / 3$ and whose cross sections taken perpendicular to the x-axis are squares.

$$
\begin{aligned}
V & =\int_{\pi / 4}^{\pi / 3}\left(\sec ^{2} x\right) d x \\
& =\left.\tan x\right|_{\pi / 4} ^{\pi / 3} \\
& =\tan \left(\frac{\pi}{3}\right)-\tan \left(\frac{\pi}{4}\right) \\
& =\sqrt{3}-1
\end{aligned}
$$

5.) Find the volume of the solid whose base is the region bounded between the curve $y=x^{3}$ and the y-axis from $y=0$ to $y=1$ and whose cross sections taken perpendicular to the y-axis are squares.

This will require a $d y$ set-up.

$$
\begin{aligned}
V & =\int_{0}^{1}(\sqrt[3]{y})^{2} d y=\int_{0}^{1} y^{2 / 3} d y \\
& =\left.\frac{y^{5 / 3}}{\frac{5}{3}}\right|_{0} ^{1}=\frac{3}{5}(1-0)=\frac{3}{5}
\end{aligned}
$$

6.) Find the volume of the solid whose base is the region bounded between the curve $x=1-y^{2}$ and the y-axis and whose cross sections taken perpendicular to the y-axis are squares.

$$
\begin{aligned}
V & =\int_{-1}^{1}\left(1-y^{2}\right)^{2} d y \\
& =\int_{-1}^{1}\left(1-2 y^{2}+y^{4}\right) d y \\
& =\left.\left(y-\frac{2 y^{3}}{3}+\frac{y^{5}}{5}\right)\right|_{-1} ^{1} \\
& =1-\frac{2}{3}+\frac{1}{5}-\left(-1+\frac{2}{3}-\frac{1}{5}\right) \\
& =2-\frac{4}{3}+\frac{2}{5}=\frac{30-20+6}{15}=\frac{16}{15}
\end{aligned}
$$

