

Unit 2 Review DIFFERENTIATION – Definition of Derivative and Basic Derivative Rules

3.) If $f(2)=3$ and $f'(2)=-1$, find the equation of the tangent line when $x=2$.	4.) Find the equation of the tangent line to the graph of $f(x) = x^2 - 2x - 3$ when $x = 2$.
Note that the slope is -1 and the given point is the ordered pair (2,3). Use the point-slope formula to write the equaiton of your line. y-3=-1(x-2) If you choose to write this in another form, just be careful to not make any mistakes. y=3-(x-2) y=-x+5	f'(x) = 2x - 2 $f'(2) = 2(2) - 2 = 2 \leftarrow \text{ This is your slope}$ $f(2) = 2^2 - 2(2) - 3 = -3 \leftarrow \text{ This is your point}$ So, $y - (-3) = 2(x - 2)$ y + 3 = 2x - 4 y = 2x - 7
2	3 . 0
5.) Differentiate $y = \frac{3x}{x^2 + 1}$	6.) For the function $f(t) = \frac{t^3 + 2}{t}$, find the
You must use the quotient rule for this function.	following. a.) the average rate of change of $f(t)$ on the interval [1, 4]
$y' = \frac{3(x^2+1) - (3x)(2x)}{(x^2+1)^2} = \frac{3x^2+3-6x^2}{(x^2+1)^2}$ $-3x^2+3 - 3(x^2-1) - 3(x-1)(x+1)$	$f_{aroc} = \frac{f(4) - f(1)}{4 - 1} = \frac{\frac{(64 + 2)}{4} - \frac{(1 + 2)}{1}}{3} = \frac{\frac{33}{2} - 3}{3} = \frac{9}{2}$
$=\frac{-3x^2+3}{(x^2+1)^2} = \frac{-3(x^2-1)}{(x^2+1)^2} = \frac{-3(x-1)(x+1)}{(x^2+1)^2}$ Note: The simplified answer(s) on the second line would possible appear in MCQ's only.	b.) the instantaneous rate of change of $f(t)$ when t = 2 $f(t) = t^2 + 2t^{-1}, f'(t) = 2t - \frac{2}{t^2}, f'(2) = 2(2) - \frac{2}{2^2} = \frac{7}{2}$

8.) Let $f(x) = \begin{cases} ax, & x \le 1 \\ bx^2 + x + 1, & x > 1 \end{cases}$. Find all 7.) Suppose that $h(x) = \frac{g(x)}{f(x)}$ and g(2) = 3, g'(2) = -1, f(2) = 5, f'(2) = -2.possible values of a and b such that f(x) is Find h'(2). differentiable at x = 1. Show proper justification. $h'(x) = \frac{g'(x) \cdot f(x) - g(x) \cdot f'(x)}{[f(x)]^2}$ In order for a function to be differentiable, it must first be continuous. $h'(2) = \frac{g'(2) \cdot f(2) - g(2) \cdot f'(2)}{[f(2)]^2}$ $\lim_{x \to 1^{-}} f(x) = a, \quad \lim_{x \to 1^{+}} f(x) = b + 2$ and we know that a = b + 2 $h'(2) = \frac{(-1)(5) - (3)(-2)}{5^2} = \frac{-5+6}{25} = \frac{1}{25}$ $f'(x) = \begin{cases} a, & x \le 1 \\ 2bx+1, & x > 1 \end{cases}$ we retain the equals $\lim_{x \to 1^{-}} f'(x) = a, \quad \lim_{x \to 1^{+}} f'(x) = 2b + 1$ and we also know that a = 2b + 1 $\begin{cases} a=b+2\\ a=2b+1 \end{cases} \Rightarrow b+2=2b+1 \Rightarrow b=1, a=3 \end{cases}$ $\mathbf{f3}(x) = \begin{cases} 3 \cdot x, & x < 1 \\ 1 \cdot x^2 + x + 1, x > 1 \end{cases}$ 9.) If $f(x) = 2x^2 + 4$, which of the following will calculate the derivative of f(x)? (A) $\frac{[2(x+\Delta x)^2+4]-(2x^2+4)}{\Delta x}$ **(B)** $\lim_{\Delta x \to 0} \frac{(2x^2 + 4 + \Delta x) - (2x^2 + 4)}{\Delta x}$ (C) $\lim_{\Delta x \to 0} \frac{[2(x + \Delta x)^2 + 4] - (2x^2 + 4)}{\Delta x}$ **(D)** $\frac{(2x^2+4+\Delta x)-(2x^2+4)}{\Delta x}$

$10 \qquad I \qquad (1) \qquad (1) \qquad (1)$				
10.) Let $h(x) = f(x) \cdot g(x)$.	6 ∱y			
Find $h'(2)$.				
(A) -2 $(B) 1$	(-1,5) $y=f(x)$			
(C) 7 (D) −1	(6,3)			
$h'(2) = f'(2) \cdot g(2) + f(2) \cdot g'(2)$	x			
=(-1)(-3)+(2)(2)=3+4=7	-3 1 8			
	y=g(x) (3,-1) (7,-4)			
11.) What is $g'(3)$?				
Since the graph of $g(x)$ features a sharp turn a	-6 (1,-5)			
x = 3, the derivative does not exist there.				
x = 5, the derivative does not exist there.				
	hade tree next to a road by the swamp and count the			
number of ducks which cross the road. The dat number of ducks crossing this road at each hou	ta in the table below shows the accumulation of the ar after 9:00am			
number of ducks crossing tins roud at each not				
Hours after 9AM	0 1 2 3 4 5 6 7			
# of ducks that have crossed the road	0 3 8 11 12 21 24 28			
Find the following:				
a.) Determine the average number of ducks	b.) Estimate the value of $f'(4.5)$ and explain its			
which have crossed the road per hour during	meaning.			
Uncle Si's 7-hour observation. Label your	incannig.			
result.	$f'(4.5) \approx \frac{21-12}{-9}$			
28-0	$f'(4.5) \approx \frac{21 - 12}{5 - 4} = 9$			
$Ducks_{avg} = \frac{28 - 0}{7 - 0} = 4 ducks per hour$	There are 9 ducks crossing the road per hour at time			
	t = 4.5 hours.			
13.) $\lim_{\Delta x \to 0} \frac{\left\lfloor 2\left(-2 + \Delta x\right)^3 - 2\left(-2 + \Delta x\right) - 2\right\rfloor - \left(-14\right)}{\Delta x}$ represents $f'(c)$ for a function $f(x)$ and a number c .				
Find $f(x)$ and c .				
$f(x) = 2x^3 - 2x - 2$ $c = -2$ Note: $f(-2) = 2(-2)^3 - 2(-2) - 2 = -16 + 4 - 2 = -14$				

14.) Suppose that f(x) and g(x) and their derivatives have the following values at x = -1 and x = 0.

x	f(x)	g(x)	f'(x)	g'(x)
-1	0	-1	2	1
0	-1	-3	-2	4

Evaluate the first derivative of each of the following combinations of f(x) and g(x) at the given value of x.

a.) $3f(x) - g(x), x = -1$ 3f'(-1) - g'(-1)	b.) $3f(x) \cdot g(x), x = -1$	$\mathbf{c.)} \ \frac{f(x)}{g(x)+2}, x=0$
3(2) – (1) 5	$3f'(x) \cdot g(x) + 3f(x) \cdot g'(x)$ $3f'(-1) \cdot g(-1) + 3f(-1) \cdot g'(-1)$ 3(2)(-1) + 3(0)(1)	$\frac{f'(x) \cdot (g(x)+2) - f(x)(g'(x))}{[g(x)+2]^2}$
	-6	$\frac{f'(0) \cdot (g(0)+2) - f(0)(g'(0))}{[g(0)+2]^2}$
		$\frac{(-2)(-3+2) - (-1)(4)}{(-3+2)^2} = \frac{2+4}{1}$
		6

15.) The graph of f', the derivative of f_{\star} is shown for -2 < x < 7 and f' is define for all x on the interval -2 < x < 7. What are all values of x for which f has a horizontal tangent line on -2 < x < 7? (A) x = 0,4 (B) x = -1,1,6(C) x = 0,2,4 (D) x = 2,3The graph of f(x) has horizontal tangents lines where the derivative of f is equal to zero. These occur when the graph of f'(x) crosses the x-axis.