2016 AB/BC 5

5. The inside of a funnel of height 10 inches has circular cross sections, as shown in the figure above. At height h, the radius of the funnel is given by $r=\frac{1}{20}\left(3+h^{2}\right)$, where $0 \leq h \leq 10$. The units of r and h are inches.
(c) The funnel contains liquid that is draining from the bottom. At the instant when the height of the liquid is $h=3$ inches, the radius of the surface of the liquid is decreasing at a rate of $\frac{1}{5}$ inch per second. At this instant, what is the rate of change of the height of the liquid with respect to time?

2017 AB 6

x	$g(x)$	$g^{\prime}(x)$
-5	10	-3
-4	5	-1
-3	2	4
-2	3	1
-1	1	-2
0	0	-3

6. Let f be the function defined by $f(x)=\cos (2 x)+e^{\sin x}$.

Let g be a differentiable function. The table above gives values of g and its derivative g^{\prime} at selected values of x. Let h be the function whose graph, consisting of five line segments, is shown in the figure above.
(a) Find the slope of the line tangent to the graph of f at $x=\pi$.
(b) Let k be the function defined by $k(x)=h(f(x))$. Find $k^{\prime}(\pi)$.
(c)Let m be the function defined by $m(x)=g(-2 x) \cdot h(x)$. Find $m^{\prime}(2)$.

AP ${ }^{\circledR}$ CALCULUS AB/CALCULUS BC 2016 SCORING GUIDELINES

Question 5

(c) $\frac{d r}{d t}=\frac{1}{20}(2 h) \frac{d h}{d t}$
$-\frac{1}{5}=\frac{3}{10} \frac{d h}{d t}$
$\frac{d h}{d t}=-\frac{1}{5} \cdot \frac{10}{3}=-\frac{2}{3} \mathrm{in} / \mathrm{se}$

\(3:\left\{\begin{array}{l}2: chain rule
1: answer\end{array}\right.\)

AP ${ }^{\circledR}$ CALCULUS AB 2017 SCORING GUIDELINES

Question 6

(a) $f^{\prime}(x)=-2 \sin (2 x)+\cos x e^{\sin x}$

$$
f^{\prime}(\pi)=-2 \sin (2 \pi)+\cos \pi e^{\sin \pi}=-1
$$

(b) $k^{\prime}(x)=h^{\prime}(f(x)) \cdot f^{\prime}(x)$

$$
\begin{aligned}
k^{\prime}(\pi) & =h^{\prime}(f(\pi)) \cdot f^{\prime}(\pi)=h^{\prime}(2) \cdot(-1) \\
& =\left(-\frac{1}{3}\right)(-1)=\frac{1}{3}
\end{aligned}
$$

(c) $m^{\prime}(x)=-2 g^{\prime}(-2 x) \cdot h(x)+g(-2 x) \cdot h^{\prime}(x)$

$$
\begin{aligned}
m^{\prime}(2) & =-2 g^{\prime}(-4) \cdot h(2)+g(-4) \cdot h^{\prime}(2) \\
& =-2(-1)\left(-\frac{2}{3}\right)+5\left(-\frac{1}{3}\right)=-3
\end{aligned}
$$

$2: f^{\prime}(\pi)$
$2:\left\{\begin{array}{l}1: k^{\prime}(x) \\ 1: k^{\prime}(\pi)\end{array}\right.$
$3:\left\{\begin{array}{c}2: m^{\prime}(x) \\ 1: m^{\prime}(2)\end{array}\right.$

