Name____

Skill Builder: Topics 6.4 & 6.5 – The Fundamental Theorem of Calculus and Accumulation Functions Interpreting the Behavior of Accumulation Functions Involving Area

1. Let f be a function whose graph consists of 5 line segments and a semicircle as shown in the figure below.

Find each of the following values.

2	If $G(x) = \int_{2}^{x} \left(\sqrt{t^4 + 1} + t^3 - 3t\right) dt$, find a value $x, -3 \le x \le 3$, for which G has a local maximum.					
	Explain your reasoning. G(x) has a relative (local) maximum when $G'(x) = \sqrt{x^4 + 1} + x^3 - 3x$ changes from a positive to a negative. This occurs at $x = 0.350$.	$\begin{array}{c} 7 \\ \hline \\$				

3. For $0 \le t \le 18$, oil enters a tank at the rate of E(t) gallons per hour, and at the same time oil leaves the tank at the rate of L(t) gallons per hour, where t is measured in hours past midnight. At midnight, there are 2000 gallons of oil in the tank. Using each component of O, explain what the function

 $O(t) = 2000 + \int_{0}^{t} (E(x) - L(x)) dx$ represents in the context of the problem.

O(t) represents the total amount of oil in the tank at time t.

4. If
$$F'(x) = f(x)$$
 and if $F(2) = 3$, $F(1) = -1$, and $F(0) = 2$, then $\int_{0}^{1} f(x) dx - \int_{1}^{2} f(x) dx$ equals which of the following?

(A) 3 (B) -3 (C) -5 (D) -7 $\int_{0}^{1} f(x) dx - \int_{1}^{2} f(x) dx = F(1) - F(0) - (F(2) - F(1))$ = (-1) - 2 - (3 - (-1)) = -3 - 4 = -75. Fans are leaving Gainbridge Fieldhouse after a big In diana

5. Fans are leaving Gainbridge Fieldhouse after a big In diana Pacers win at a rate modeled by the function $L(t) = \frac{8000}{(t+1)^2}$,

where L is the number of people leaving per minute t minutes after the conclusion of the game. If 14,500 people were present at the conclusion of the game, how many people were still in the arena 9 minutes after the conclusion of the game?

Let P(t) represent the number of people on the arena at time *t* minutes after the concluson of the game.

$$P(9) = 14,500 - \int_{0}^{9} L(t) dt = 7300$$
 people

6. The volume of a balloon expands as the air inside the balloon is heated. The radius of the balloon, in centimeters, is modeled by the twice-differentiable functions r(t), where t is measured in minutes. The table below gives selected values of the rate of change, r'(t), of the radius of the balloon for $0 \le t \le 30$.

t	0	5	10	15	20	25	30
r'(t)	6.7	5.6	4.9	4.0	3.4	2.7	2.2

Use a midpoint Riemann sum with three subintervals to approximate $\int_{0}^{50} r'(t) dt$. Using correct units,

explain the meaning of $\int_{0}^{30} r'(t) dt$ in the context of this problem.

$$\int_{0}^{30} r'(t) dt \approx (10)(5.6) + (10)(4.0) + (10)(2.7)$$
$$\approx 56 + 40 + 27$$
$$\approx 123$$

The balloon's radius grew by a total of 123 centimeters during the 30 minutes.

7. A storage tank contains 225 gallons of solvent at time t = 0. During the interval $0 \le t \le 10$,

solvent is being removed from the tank at a rate of $L(t) = 3 + 10\cos\left(\frac{t^2}{40}\right)$ gallons per hour. During

this same interval, clean solvent is being pumped into the tank at a rate of $E(t) = \frac{10}{2 + \ln(t+4)}$ gallons per hour.

a. Is the amount of solvent in the tank increasing or decreasing a time t = 4 hours? Explain your reasoning.

 $L(4) \approx 12.2106$ and $E(4) \approx 2.4513$ Since L(4) > E(4), the amount of solvent in the tank is decreasing at time t = 4 hours.

c. How many gallons of solvent are in the tank at time t = 7 hours?

Let S(t) represent the amount of solvent in the tank at time t.

$$S(t) = 225 - \int_{0}^{7} 3 + 10\cos\left(\frac{x^{2}}{40}\right) dx + \int_{0}^{t} \frac{10}{2 + \ln(x+4)} dx$$
$$S(7) = 225 - \int_{0}^{7} 3 + 10\cos\left(\frac{x^{2}}{40}\right) dx + \int_{0}^{7} \frac{10}{2 + \ln(x+4)} dx$$
$$\approx 161.499 \text{ gallons}$$

Done
Done
161.499

Justify your answer.

```
A(t) = 0 when t \approx 3.935
Candidates: 0, 3.935, 5
```


- by depth at time t = 5. (t) $m(t):=3 \cdot \pi \cdot \sin\left(\frac{\pi \cdot t}{12}\right)$ $s(t):=0.14 \cdot t^{3}-0.16 \cdot s(5.) - m(5.)$
- = 5. $m(t):=3 \cdot \pi \cdot \sin\left(\frac{\pi \cdot t}{12}\right)$

 $m(t):=3 \cdot \pi \cdot \sin\left(\frac{\pi \cdot t}{12}\right)$

 $s(t):=0.14 \cdot t^3 - 0.16 \cdot t^2 + 0.54 \cdot t - 0.1$

 $32 - \begin{bmatrix} 3.935 \\ m(t) dt + \end{bmatrix} \begin{bmatrix} 3.935 \\ s(t) dt \end{bmatrix}$

 $32 - \int_{0}^{5} m(t) dt + \int_{0}^{5} s(t) dt$

solve(s(t)-m(t)=0.,t) t=-2.91899 or t=-0.052121 or t=3.93567

b. Express A(t), the total depth of snow, in inches, at time t, as a function defined by an integral.

d. For $0 \le t \le 5$, at what time t is the depth of the snow a minimum? What is the minimum value?

$$A(t) = 32 - \int_{0}^{t} M(x) dx + \int_{0}^{t} S(x) dx$$

 $\int_{0}^{\infty} M(t) dt \approx 26.683 \text{ inches}$

- **c.** Find the rate of change of the snow depth at time t = 5.
 - A'(t) = -M(t) + S(t) or S(t) M(t) A'(5) = S(5) - M(5) $\approx 6.996 \text{ inches / hour}$

function
$$M(t)$$
 given by $M(t) = 3\pi \sin\left(\frac{\pi t}{12}\right)$.

8. On a certain day, the depth of snow at Paoli Peaks

Ski Resort melts at a rate modeled by the

Hw Unit 6 – Integration and Accumulation of Change

A snowmaking machine adds snow at a rate modeled by the function S(t) given by $S(t) = 0.14t^3 - 0.16t^2 + 0.54t - 0.1$.

Both *M* and *S* are measured in inches per hour and *t* is measured in hours for $0 \le t \le 5$. At time t = 0, the snow depth is 32 inches.

a. How many inches of snow will melt during the 5-hour period?

$m(t) := 3 \cdot \pi \cdot \sin\left(\frac{\pi \cdot t}{12}\right)$	Done
$s(t) := 0.14 \cdot t^3 - 0.16 \cdot t^2 + 0.54 \cdot t - 0.1$	Done
$\int_{0}^{5.} m(t) \mathrm{d}t$	26.6825

Done

Done

23.4572

26.7758

Name