\qquad
Skill Builder: Topics $6.4 \& 6.5$ - The Fundamental Theorem of Calculus and Accumulation Functions Interpreting the Behavior of Accumulation Functions Involving Area

1. Let f be a function whose graph consists of 5 line segments and a semicircle as shown in the figure below. Let $g(x)=\int_{0}^{x} f(t) d t$.

Find each of the following values.
a. $\begin{aligned} & g(0) \\ & =\int_{0}^{0} f(t) d t=0\end{aligned}$
b. $g(2)$
$=\int_{0}^{2} f(t) d t=\frac{1}{2}(2+1)(2)=3$
c. $g(4)$
$=\int_{0}^{4} f(t) d t=3+\int_{2}^{4} f(t) d t$
$=3+\frac{1}{2}(2)(1)-\frac{1}{2}(2)(1)=3$
d. $g(6)$
$=\int_{0}^{6} f(t) d t=3+\int_{4}^{6} f(t) d t$
$=3-\frac{1}{2}(2)(2)=3-2=1$
g. $g^{\prime}(3)$
$=f(3)=0$
h. $g^{\prime}(13)$
$=f(13)=3$
i. Sketch a possible graph of g in the coordinate plane below.

\qquad
2. If $G(x)=\int_{2}^{x}\left(\sqrt{t^{4}+1}+t^{3}-3 t\right) d t$, find a value $x,-3 \leq x \leq 3$, for which G has a local maximum.

Explain your reasoning.
$G(x)$ has a relative (local) maximum when $G^{\prime}(x)=\sqrt{x^{4}+1}+x^{3}-3 x$ changes from a positive to a negative. This occurs at $x=0.350$.

3. For $0 \leq t \leq 18$, oil enters a tank at the rate of $E(t)$ gallons per hour, and at the same time oil leaves the tank at the rate of $L(t)$ gallons per hour, where t is measured in hours past midnight. At midnight, there are 2000 gallons of oil in the tank. Using each component of O, explain what the function $O(t)=2000+\int_{0}^{t}(E(x)-L(x)) d x$ represents in the context of the problem.
$O(t)$ represents the total amount of oil in the tank at time t.
4. If $F^{\prime}(x)=f(x)$ and if $F(2)=3, F(1)=-1$, and $F(0)=2$, then $\int_{0}^{1} f(x) d x-\int_{1}^{2} f(x) d x$ equals which of the following?
(A) 3
(B) -3
(C) -5
(D) -7

$$
\begin{aligned}
\int_{0}^{1} f(x) d x-\int_{1}^{2} f(x) d x & =F(1)-F(0)-(F(2)-F(1)) \\
& =(-1)-2-(3-(-1)) \\
& =-3-4=-7
\end{aligned}
$$

5. Fans are leaving Gainbridge Fieldhouse after a big In diana Pacers win at a rate modeled by the function $L(t)=\frac{8000}{(t+1)^{2}}$, where L is the number of people leaving per minute t minutes after the conclusion of the game. If 14,500 people were present at the conclusion of the game, how many people were still in the arena 9 minutes after the conclusion of the game?

Let $P(t)$ represent the number of people on the arena at time t minutes after the concluson of the game.
$P(9)=14,500-\int_{0}^{9} L(t) d t=7300$ people

$$
\begin{aligned}
& l(t):=\frac{8000}{(t+1)^{2}} \\
& 14500-\int_{0}^{9} l(t) \mathrm{d} t
\end{aligned}
$$

Done 7300
\qquad
6. The volume of a balloon expands as the air inside the balloon is heated. The radius of the balloon, in centimeters, is modeled by the twice-differentiable functions $r(t)$, where t is measured in minutes. The table below gives selected values of the rate of change, $r^{\prime}(t)$, of the radius of the balloon for $0 \leq t \leq 30$.

t	0	5	10	15	20	25	30
	$r^{\prime}(t)$	6.7	5.6	4.9	4.0	3.4	2.7

Use a midpoint Riemann sum with three subintervals to approximate $\int_{0}^{30} r^{\prime}(t) d t$. Using correct units, explain the meaning of $\int_{0}^{30} r^{\prime}(t) d t$ in the context of this problem.

$$
\begin{aligned}
\int_{0}^{30} r^{\prime}(t) d t & \approx(10)(5.6)+(10)(4.0)+(10)(2.7) \\
& \approx 56+40+27 \\
& \approx 123
\end{aligned}
$$

The balloon's radius grew by a total of 123 centimeters during the 30 minutes.
7. A storage tank contains 225 gallons of solvent at time $t=0$. During the interval $0 \leq t \leq 10$, solvent is being removed from the tank at a rate of $L(t)=3+10 \cos \left(\frac{t^{2}}{40}\right)$ gallons per hour. During this same interval, clean solvent is being pumped into the tank at a rate of $E(t)=\frac{10}{2+\ln (t+4)}$ gallons per hour.
a. Is the amount of solvent in the tank increasing or decreasing a time $t=4$ hours? Explain your reasoning.
$L(4) \approx 12.2106$ and $E(4) \approx 2.4513$
Since $L(4)>E(4)$, the amount of solvent in the tank is decreasing at time $t=4$ hours.
c. How many gallons of solvent are in the tank at time $t=7$ hours?

$l(t):=3+10 \cdot \cos \left(\frac{t^{2}}{40}\right)$	Done
$e(t):=\frac{10}{2+\ln (t+4)}$	Done
$l(4)$.	12.2106
$e(4)$.	2.45132

Let $S(t)$ represent the amount of solvent in the tank at time t.

$$
\begin{aligned}
S(t) & =225-\int_{0}^{t} 3+10 \cos \left(\frac{x^{2}}{40}\right) d x+\int_{0}^{t} \frac{10}{2+\ln (x+4)} d x \\
S(7) & =225-\int_{0}^{7} 3+10 \cos \left(\frac{x^{2}}{40}\right) d x+\int_{0}^{7} \frac{10}{2+\ln (x+4)} d x \\
& \approx 161.499 \text { gallons }
\end{aligned}
$$

\qquad
8. On a certain day, the depth of snow at Paoli Peaks

Ski Resort melts at a rate modeled by the function $M(t)$ given by $M(t)=3 \pi \sin \left(\frac{\pi t}{12}\right)$.
A snowmaking machine adds snow at a rate modeled by the function $S(t)$ given by $S(t)=0.14 t^{3}-0.16 t^{2}+0.54 t-0.1$.
Both M and S are measured in inches per hour and t is
 measured in hours for $0 \leq t \leq 5$. At time $t=0$, the snow depth is 32 inches.
a. How many inches of snow will melt during the 5 -hour period?

$$
\int_{0}^{5} M(t) d t \approx 26.683 \text { inches }
$$

b. Express $A(t)$, the total depth of snow, in inches, at time t, as a function defined by an integral.

$$
A(t)=32-\int_{0}^{t} M(x) d x+\int_{0}^{t} S(x) d x
$$

c. Find the rate of change of the snow depth at time $t=5$.

$$
\begin{aligned}
A^{\prime}(t) & =-M(t)+S(t) \text { or } S(t)-M(t) \\
A^{\prime}(5) & =S(5)-M(5) \\
& \approx 6.996 \text { inches } / \text { hour }
\end{aligned}
$$

$m(t):=3 \cdot \pi \cdot \sin \left(\frac{\pi \cdot t}{12}\right)$	Done
$s(t):=0.14 \cdot t^{3}-0.16 \cdot t^{2}+0.54 \cdot t-0.1$	Done
$s(5)-.m(5)$.	6.99636

d. For $0 \leq t \leq 5$, at what time t is the depth of the snow a minimum? What is the minimum value? Justify your answer.
$A^{\prime}(t)=0$ when $t \approx 3.935$
Candidates: 0, 3.935, 5

t	$A(t)$
0	$A(0)=32-\int_{0}^{0} M(x) d x+\int_{0}^{0} S(x) d x=32$
3.935	$A(3.935)=32-\int_{0}^{3.935} M(x) d x+\int_{0}^{3.335} S(x) d x \approx 23.457$
5	$A(5)=32-\int_{0}^{5} M(x) d x+\int_{0}^{5} S(x) d x \approx 26.776$

The snow reaches a minimum depth of approx. 23.457 inches

$$
\begin{aligned}
& m(t):=3 \cdot \pi \cdot \sin \left(\frac{\pi \cdot t}{12}\right) \quad \text { Done } \\
& s(t):=0.14 \cdot t^{3}-0.16 \cdot t^{2}+0.54 \cdot t-0.1 \quad \text { Done } \\
& \text { solve }(s(t)-m(t)=0 ., t) \\
& t=-2.91899 \text { or } t=-0.052121 \text { or } t=3.93567
\end{aligned}
$$

$$
\begin{aligned}
& 32-\int_{0}^{3.935} m(t) \mathrm{d} t+\int_{0}^{3.935} s(t) \mathrm{d} t
\end{aligned}
$$

