Name_

Skill Builder: Topic 6.6 – Applying Properties of Definite Integrals

1. Suppose that f and g are continuous functions and that $\int_{1}^{2} f(x) dx = -4, \quad \int_{1}^{5} f(x) dx = 6, \quad \text{and} \quad \int_{1}^{5} g(x) dx = 8.$ Find each of the following

a.
$$\int_{2}^{2} g(x) dx$$

= 0
b. $\int_{5}^{1} g(x) dx$
= $-\int_{1}^{5} g(x) dx = -8$
c. $\int_{1}^{2} 3f(x) dx$
= $3 \cdot (-4) = -12$
d. $\int_{2}^{5} f(x) dx$
= $\int_{1}^{5} f(x) dx = 6 - (-4) = 10$
e. $\int_{1}^{5} [f(x) - g(x)] dx$
= $6 - 8 = -2$
f. $\int_{1}^{5} [4f(x) - g(x)] dx$
= $4(6) - 8 = 24 - 8 = 16$

2. Suppose that f is a continuous function such that $\int_{0}^{3} f(t) dt = 3$ and $\int_{0}^{4} f(t) dt = 7$.

Find each of the following.

a.
$$\int_{3}^{4} f(t) dt$$

= $\int_{0}^{4} f(t) dt - \int_{0}^{3} f(t) dt = 7 - 3 = 4$
b. $\int_{4}^{3} f(t) dt$
= $-\int_{3}^{4} f(t) dt = -4$

3. If $\int_{3}^{7} h(x) dx = 5$ and $\int_{3}^{7} k(x) dx = 3$, which one of the following statements is NOT true? (A) $\int_{3}^{7} h(x)k(x) dx = 15$ (B) $\int_{3}^{7} [h(x) + k(x)] dx = 8$ (C) $\int_{3}^{7} 2h(x) dx = 10$ (D) $\int_{3}^{7} [h(x) - k(x)] dx = 2$ (E) $\int_{7}^{3} [k(x) - h(x)] dx = 2$ (F) $\int_{3}^{3} [h(x) + k(x)] dx = 0$

Name_

- 4. Suppose that g is a continuous function such that $\int_{-2}^{1} g(x) dx = 2$ and $\int_{1}^{3} g(x) dt = -6$. Find $\int_{3}^{-2} g(x) dx$.
 - $= -\int_{-2}^{3} g(x) dx = -\left(\int_{-2}^{1} g(x) dx + \int_{1}^{3} g(x) dx\right)$ = -(2 + (-6)) = -(-4) = 4
- 5. Each of the regions in the figure bounded by the graph of f(x) and the x-axis has area 3.

Find each of the following.

a.
$$\int_{-4}^{2} [4f(x)-5]dx$$
$$= 4(-3+3-3)-5(6)$$
$$= -12-30 = -42$$
b.
$$\int_{-4}^{2} |f(x)|dx$$
$$= 3+3+3=9$$
c.
$$\int_{-4}^{2} f(x)dx$$
$$= -\int_{-4}^{2} f(x)dx$$
$$= -(-3+3-3)=3$$
d.
$$\int_{-2}^{2} f(|x|)dx$$
$$= -3+-3$$
$$= -6$$
e.
$$\left|\int_{-4}^{2} f(x)dx\right|$$
$$= |-3+3-3|=3$$
f.
$$\int_{-2}^{4} f(-x)dx$$
$$= -3+3-3$$
$$= -3$$