UNIT 6 REVIEW - Integration and Accumulations of Change

Part I. Multiple Choice: Graphing Calculator Permitted

1. The graph to the right shows upper and lowers sums for the function $f(x)=\sqrt{x}+1$ using 4 sub-intervals. Which of the following correctly approximates the sum using the right hand endpoint?
(A) 1.768
(B) 1.518
(C) 1.268
(D) 3.030

$$
\begin{aligned}
A_{R} & \approx \frac{1}{4}\left[\left(\sqrt{\frac{1}{4}}+1\right)+\left(\sqrt{\frac{1}{2}}+1\right)+\left(\sqrt{\frac{3}{4}}+1\right)+(\sqrt{1}+1)\right] \\
& \approx \frac{1}{4}(1.5+1.7071+1.8660+2) \\
& \approx 1.768
\end{aligned}
$$

2. Which of the following definite integrals represents the area of the shaded region? Each box represents one unit.
(A) $\int_{1}^{-1} x^{2} d x$
(B) $\int_{-1}^{1}\left(x^{2}-1\right) d x$
(C) $\int_{0}^{2} x^{2} d x$
(D) $2 \int_{0}^{2} x^{2} d x$

While $\int_{-2}^{2} x^{2} d x$ is a popular way to depict this area, it is not among the choices. Instead we can integrate from 0 to 2 and

3. The lower sum of $f(x)=\sqrt{x}$ on the interval $[0,1]$ with four equal subintervals is
(A) 0.768
(B) 0.667
(C) 0.518
(D) 0.25

$$
\begin{aligned}
A_{L} & \approx \frac{1}{4}(\sqrt{0}+\sqrt{.25}+\sqrt{.5}+\sqrt{.75}) \\
& \approx 0.518
\end{aligned}
$$

\qquad
4. Let $f(x)$ be a continuous function. What is the value of $\int_{3}^{15} f(x) d x$ if it is known that $\int_{1}^{5} f(3 x) d x=7$?
(A) $\frac{7}{3}$
(B) 7
(C) 21
(D) $\frac{3}{7}$

$$
\begin{aligned}
& u=3 x \rightarrow d u=3 d x \\
& u(1)=3 ; u(5)=15 \\
& \int_{1}^{5} f(3 x) d x=7=\frac{1}{3} \int_{3}^{15} f(u) d u \\
& \int_{3}^{15} f(u) d u=21
\end{aligned}
$$

5. Which of the following integral expressions CANNOT be found using any of the basic integration formulas or the techniques that we've discussed in class throughout Unit 6 ?
(A) $\int \frac{x^{5}}{1+x^{4}} d x$
(B) $\int \frac{x^{3}}{1+x^{4}} d x$
(C) $\int \frac{x}{1+x^{4}} d x$
(D) $\int \frac{1}{1+x^{4}} d x$
(A) can be integrated using long division.
(B) can be integrated using u substitution resulting in a natural log
(C) can be integrated resulting in an arctan form
(D) cannot be integrated using any technique discussed in Unit 6
\qquad

Part II. Free Response: Graphing Calculator Permitted.

6. Fish enter a lake at a rate modeled by the function E given by $E(t)=20+15 \sin \left(\frac{\pi t}{6}\right)$. Fish leave the lake at a rate modeled by the function L given by $L(t)=4+2^{0.1 t^{2}}$. Both $E(t)$ and $L(t)$ are measured in fish per hour, and t is measured in hours since midnight $(t=0)$.
a. How many fish enter the lake over the 5 -hour period from midnight $(t=0)$ to 5 A.M. $(t=5)$? Give your answer to the nearest whole number.

$$
\int_{0}^{5} E(t) \approx 153.458
$$

Approximately 153 fish enter the lake from midnight to 5 A.M.
b. What is the total number of fish in the lake at 5 A.M. $(t=5)$?

$$
\int_{0}^{5}[E(t)-L(t)] d t \approx 123.163
$$

c. Is the rate of change in the number of fish in the lake increasing or decreasing at 5 A.M. ? Explain your reasoning.
$E^{\prime}(5) \approx-6.801$ fish per hour per hour
$L^{\prime}(5) \approx 3.921$ fish per hour per hour
$E^{\prime}(5)-L^{\prime}(5)=-10.723<0$
Since $E^{\prime}(5)-L^{\prime}(5)<0$, the rate of change in the number of fish in the lake is decreasing at time $t=5$ hours.
d. At what time t, for $0 \leq t \leq 8$, is the greatest number of fish in the lake? Justify your answer.

Let the number of fish in the lake be represented by $F(t)=\int_{0}^{t}[E(x)-L(x)] d x$.
$F^{\prime}(t)=E(t)-L(t)$
$F^{\prime}(t)=E(t)-L(t)=0$ when $t=6.204$

t	$F(t)$
0	0
6.204	$\int_{0}^{6.204}[E(t)-L(t)] d t \approx 135.015$
8	$\int_{0}^{8}[E(t)-L(t)] d t \approx 80.920$

Part III. Multiple Choice: No calculator is permitted.

7. Choose the correct statement(s) given that $\int_{0}^{9} f(x) d x=11$ and $\int_{3}^{9} f(x) d x=-1$.
I. $\int_{9}^{3} f(x) d x=1$
II. $\int_{3}^{0} f(x) d x=6$
III. $\int_{0}^{3} f(x) d x=12$
(A) I only
(B) II only
(C) III only
(D) I and II
(E) I and III

I is correct because when the boundaries of integration are reversed, the answer takes the opposite sign.

Looking at II, we know $\int_{0}^{3} f(x) d x=\int_{0}^{9} f(x) d x-\int_{3}^{9} f(x) d x$ by the additive integral property. This would result in $\int_{0}^{3} f(x) d x=11-(-1)=12 . \int_{3}^{0} f(x) d x=-12$ and not 6 .
8. The limit of the right-hand sum given by $\lim _{n \rightarrow \infty} \frac{1}{n}\left[\sum_{i=1}^{n}\left(\frac{i}{n}\right)^{3}\right]$ represents the area under which function (and above the x-axis) on which interval?
(A) $f(x)=x^{3}$ on $[1,2]$
(B) $f(x)=x^{3}$ on $[0,2]$
(C) $f(x)=x^{3}$ on $[0,1]$
(D) $f(x)=\frac{1}{x^{3}}$ on $[0,1]$
width $=\frac{b-a}{n}=\frac{1}{n}$. This eliminates Choice (B).
Because there is no constant added within $\left(\frac{i}{n}\right)^{3}$, we can eliminate Choice (A).
The function under which we are finding the area must be $f(x)=x^{3}$, which means the correct answer choice must be (C).
9. If the substitution $u=x-1$ is made, then the integral $\int_{2}^{5} x \sqrt{x-1} d x=$
(A) $\int_{2}^{5}(u+1) \sqrt{u} d u$
(B) $\int_{1}^{4}(u+1) \sqrt{u} d u$
(C) $\int_{1}^{4} u \sqrt{u-1} d u$
(D) $\int_{2}^{5} u \sqrt{u-1} d u$

$$
\begin{aligned}
& u=x-1 \rightarrow x=u+1 \\
& d u=d x \\
& \int_{2}^{5} x \sqrt{x-1} d x=\int_{1}^{4}(u+1) \cdot \sqrt{u}
\end{aligned}
$$

\qquad
Use the graph of $f(x)$ below for problems 10 and 11.
10. Find $\int_{1}^{4} f(x) d x$.
(A) $\frac{\pi+5}{2}$
(B) $\frac{5}{2}+\pi$
(C) $\pi+3$
(D) $\frac{\pi}{2}+3$

$$
\begin{aligned}
& \int_{1}^{4} f(x) d x= \\
& \frac{1}{2} \pi(1)^{2}+(2)(1)+\frac{1}{2}(1)(1) \\
& =\frac{\pi}{2}+2+\frac{1}{2}=\frac{\pi+5}{2}
\end{aligned}
$$

11. Find $\int_{-3}^{1} f(x) d x$.
(A) -2.5
(B) -1.5
(C) 3
(D) 2.5

$$
\begin{aligned}
& \int_{-3}^{1} f(x) d x= \\
& -(1)(1)-\frac{1}{2}(2)(1)+\frac{1}{2}(1)(1) \\
& =-1-1+\frac{1}{2}=-\frac{3}{2}
\end{aligned}
$$

12. If the substitution $u=\cos 3 x$ is made, then the integral $\int_{0}^{\frac{\pi}{6}} \cos ^{3} 3 x \sin 3 x d x=$
(A) $-\frac{1}{3} \int_{0}^{\frac{\pi}{6}} u^{3} d u$
(B) $\frac{1}{3} \int_{0}^{\pi} u^{3} d u$
(C) $-\frac{1}{3} \int_{1}^{0} u^{3} d u$
(D) $-\frac{1}{3} \int_{0}^{1} u^{3} d u$

$$
\begin{aligned}
& u=\cos 3 x \rightarrow d u=-3 \sin 3 x d x \\
& u\left(\frac{\pi}{6}\right)=\cos \left(\frac{\pi}{2}\right)=0 \\
& u(0)=\cos (0)=1 \\
& \int_{0}^{\frac{\pi}{6}} \cos ^{3} 3 x \sin 3 x d x=-\frac{1}{3} \int_{1}^{0} u^{3} d u
\end{aligned}
$$

13. Consider $F(x)=\int_{1}^{2 x} \frac{1}{1+t^{3}} d t$. Find $F^{\prime}(x)$.
(A) $\frac{1}{1+8 x^{2}}$
(B) $\frac{1}{1+2 x^{2}}$
(C) $\frac{2}{1+8 x^{3}}-\frac{1}{2}$
(D) $\frac{2}{1+8 x^{3}}$

$$
\begin{aligned}
F^{\prime}(x) & =\frac{1}{1+(2 x)^{3}} \cdot \frac{d}{d x}[2 x] \\
& =\frac{1}{1+8 x^{3}} \cdot 2
\end{aligned}
$$

\qquad
14. $\int \frac{x^{2}+1}{x-2} d x=$
(A) $x+2+\frac{5}{x-2}+C$
(B) $\frac{x^{2}}{2}+2 x+\frac{5 x}{\frac{x^{2}}{2}-2 x}+C$
(C) $\frac{x^{2}}{2}+2 x+5 \ln |x-2|+C$
(D) $\frac{\frac{x^{3}}{3}+x}{\frac{x^{2}}{2}-2 x}+C$

Begin using polynomial long division.

$$
\begin{array}{r}
x+2 \\
x - 2 \longdiv { x ^ { 2 } + 0 x + 1 } \\
-\frac{\left(x^{2}-2 x\right)}{2 x+1} \\
-\frac{(2 x-4)}{5}
\end{array}
$$

$$
\begin{aligned}
\int \frac{x^{2}+1}{x-2} d x & =\int\left(x+2+\frac{5}{x-2}\right) d x \\
& =\frac{x^{2}}{2}+2 x+5 \ln |x-2|+C
\end{aligned}
$$

15. $\int \frac{d x}{x^{2}+8 x+20}=$
(A) $\frac{1}{2} \arctan (x-4)+C$
(B) $\frac{1}{2} \arctan \left(\frac{x+4}{2}\right)+C$
(C) $\ln \left|x^{2}+8 x-20\right|+C$
(D) $\arcsin \left(\frac{x+4}{2}\right)+C$

$$
\begin{aligned}
\int \frac{d x}{x^{2}+8 x+20} & =\int \frac{d x}{x^{2}+8 x+16+20-16} \\
& =\int \frac{d x}{(x+4)^{2}+4} \\
& =\frac{1}{2} \arctan \left(\frac{x+4}{2}\right)+C
\end{aligned}
$$

16. Find $y=f(x)$ if $f^{\prime \prime}(x)=3 x+2, f^{\prime}(2)=13, f(0)=1$.
(A) $f(x)=\frac{3 x^{2}}{2}+2 x+3$
(B) $f(x)=\frac{x^{3}}{2}+x^{2}+3 x-1$
(C) $f(x)=\frac{x^{3}}{2}+x^{2}+3 x+1$
(D) $f(x)=\frac{3 x^{3}}{2}+2 x^{2}+x+1$
$f^{\prime}(x)=\int f^{\prime \prime}(x) d x=\int(3 x+2) d x=\frac{3 x^{2}}{2}+2 x+C_{1}$
Use $f^{\prime}(2)=13$ to find C_{1}
$13=\frac{3(2)^{2}}{2}+2(2)+C_{1} \rightarrow C_{1}=13-6-4=3$
Therefore, $f^{\prime}(x)=\frac{3 x^{2}}{2}+2 x+3$

$$
f(x)=\int f^{\prime}(x) d x=\int\left(\frac{3 x^{2}}{2}+2 x+3\right) d x=\frac{x^{3}}{2}+x^{2}+3 x+C_{2}
$$

Use $f(0)=1$ to find C_{2}
$1=\frac{(0)^{3}}{2}+(0)^{2}+3(0)+C_{2} \rightarrow C_{2}=1$
Therefore, $f(x)=\frac{x^{3}}{2}+x^{2}+3 x+1$
\qquad

Part IV. Free Response: No calculator is permitted.

Be sure to show all your work. Point values are given in ().
17. The Wing Bowl is an annual eating contest founded by the Morning Show on Philadelphia's WIP Radio as a celebration of gluttony. The event, which attracts thousands of spectators, is a contest to see who can eat the most chicken wings in 30 minutes. The rate of wing consumption, in wings per minute, recorded during a past Wing Bowl of the champion El Wingador, is given by a twice-differentiable and strictly increasing function W of time t. The graph of W for the time interval $0 \leq t \leq 30$ minutes is shown.

a. Approximate the value of $\int_{0}^{30} W(t) d t$ using a left Riemann sum with
six subintervals indicated by the data from the graph.

$$
\begin{aligned}
\int_{0}^{30} W(t) d t & \approx \frac{30-0}{6}(W(0)+W(5)+W(10)+W(15)+W(20)+W(25)) \\
& \approx \frac{30-0}{6}(4+5+6.5+8.5+11+12.5) \\
& \approx 5(47.5) \\
& \approx 237.5
\end{aligned}
$$

b. Is the numerical approximation found in part (a) above less than or greater than the actual value of $\int_{0}^{30} W(t) d t$? Justify your answer.
The approximation is less than the actual value of $\int_{0}^{30} W(t) d t$ because $W(t)$ is increasing.
c. Approximate the value of $\int_{0}^{30} W(t) d t$ using a trapezoidal sum with six subintervals indicated by the data from the graph.

$$
\begin{aligned}
& \int_{0}^{30} W(t) \approx \frac{30-0}{2(6)}(W(0)+2 \cdot W(5)+2 \cdot W(10)+2 \cdot W(15)+2 \cdot W(20)+2 \cdot W(25)+W(30)) \\
& \approx \frac{30}{12}(4+2 \cdot 5+2 \cdot 6.5+2 \cdot 8.5+2 \cdot 11+2 \cdot 12.5+13) \\
& \approx \frac{5}{2}(4+10+13+17+22+25+13) \\
& \approx \frac{5}{2}(104) \\
& \approx 260
\end{aligned}
$$

d. Explain the meaning of the value of $\int_{0}^{30} W(t) d t$ using correct units. (1 point)

$$
\int_{0}^{30} W(t) d t \text { signifies the total number of chicken wings El Wingador consumed in the } 30 \text {-minute time period. }
$$

Unit 6 - Review Problems (The Integral as an Accumulator)

The following problem appeared on the 2014 AP Calculus AB Exam.

1.) The function f is defined on the closed interval $[-5,4]$. The graph of f consists of three line segments and is shown in the figure to the above. Let g be the function defined by $g(x)=\int_{-3}^{x} f(t) d t$.
a. Find $g(3)$.

$$
g(3)=\int_{-3}^{3} f(t) d t=\frac{1}{2}(5)(4)-\frac{1}{2}(1)(2)=10-1=9
$$

b. On what open intervals contained in $-5<x<4$ is the graph of g both increasing and concave up?

$$
\begin{aligned}
& g^{\prime}(x)=f(x)>0 \text { on }[-5,2] \\
& g^{\prime \prime}(x)=f^{\prime}(x)>0 \text { on }[-3,0]
\end{aligned}
$$

The graph of g is both increasing and concave up on the interval $[-3,0]$.
c. The function $h(x)$ is defined by $h(x)=\frac{g(x)}{5 x}$. Find $h^{\prime}(3)$.

$$
\begin{aligned}
& h^{\prime}(x)=\frac{g^{\prime}(x) \cdot 5 x-g(x) \cdot 5}{(5 x)^{2}} \\
& h^{\prime}(3)=\frac{g^{\prime}(3) \cdot 5(3)-g(3) \cdot 5}{(5 \cdot 3)^{2}}=\frac{(-2)(15)-(9)(5)}{225}=-\frac{75}{225}=-\frac{1}{3}
\end{aligned}
$$

2.) Let f be the continuous function defined on $[-4,3]$ whose graph, consisting of three line segments and a semicircle centered at the origin, is given above. Let g be the function given by $g(x)=\int_{1}^{x} f(t) d t$.
a. Find the values of $g(2)$ and $g(-2)$.

$$
\begin{aligned}
& g(2)=\int_{1}^{2} f(t) d t=-\frac{1}{2}(1)\left(-\frac{1}{2}\right)=\frac{1}{4} \\
& g(-2)=\int_{1}^{-2} f(t) d t=-\int_{-2}^{1} f(t) d t=-\left(\frac{1}{2}(1)(3)-\frac{1}{2} \pi(1)^{2}\right)=-\left(\frac{3}{2}-\frac{\pi}{2}\right)=\frac{\pi-3}{2}
\end{aligned}
$$

b. For each of $g^{\prime}(-3)$ and $g^{\prime \prime}(-3)$, find the value or state that it doesn't exist.

$$
\begin{array}{ll}
g^{\prime}(x)=f(x) & g^{\prime \prime}(x)=f^{\prime}(x) \\
g^{\prime}(-3)=f(-3)=2 & g^{\prime \prime}(-3)=f^{\prime}(-3)=1
\end{array}
$$

c. Find the x-coordinate of each point at which the graph of g has a horizontal tangent line. For each of these points, determine whether g has a relative minimum, relative maximum, or neither a minimum nor a maximum at the point. Justify your answers.
g has a horizontal tangent when $g^{\prime}(x)$ or $f(x)=0$ which occurs at $x=-1$ and $x=1$.
g has a relative maximum at $x=-1$ because $g^{\prime}(x)=f(x)$ changes signs from positive to negative at $x=-1$.
g has neither a relative maximum nor minimum at $x=1$ because $g^{\prime}(x)=f(x)$ does not change signs at $x=1$.
b. For $-4<x<3$, find all values of x for which the graph of g has a point of inflection. Explain your reasoning.

$$
g^{\prime \prime}(x)=f^{\prime}(x)=0 \text { at } x=0 \quad g^{\prime \prime}(x)=f^{\prime}(x) \text { is undefined at } x=-2 \text { and } x=1 .
$$

g has a point of inflection at $x=-2, x=0$, and $x=1$ because $g^{\prime \prime}(x)=f^{\prime}(x)$
chranges sigins at throse values.

